针孔透射式光栅光谱仪衍射 效率的理论模拟

李跃林 白文安 陈时胜 徐至展 (中国科学院上海光学精密机械研究所)

提 要

本文介绍了最新建立的针孔式透射光栅光谱仪的性质,对其衍射效率进行了理论模拟和分析,并利用 有关实验数据计算了光栅的重要结构参数。 关键词: X 射线激光,激光等离子体,软 X 射线光谱。

一、引 言

透射式光栅是近年来新发展起来的极紫外和软 X 射线光谱范围的色散元件^[1~5]。无支 撑透射光栅的研制成功^[1],大大提高了其衍射效率,使之得以更广泛地应用于各领域的光谱 测量;尤其是在惯性约束激光核聚变和 X 射线激光的实验研究中,世界各大实验室都用它 进行过光谱诊断实验^[6~11]。

为将透射光栅谱仪有效地应用于实验数据的定量分析,必须对其性质,尤其是衍射效率 有全面的了解。本文报告了我们最新建立的针孔透射式光栅光谱仪的性质,对其衍射效率 进行了理论模拟,并利用有关实验的数据计算了光栅的重要结构参数;最后还介绍了有关的 实验布局和初步物理结果。

二、针孔透射式光栅光谱仪(PTGS)

我们的透射光栅是由离子束刻蚀金箔成自由支撑状而成¹²¹,外形及结构见图 1。光栅周期 $d=1\mu$ m,透光处与光栅周期之比 $a/d=0.35\sim0.45$,厚度 $z=0.2\sim0.3\mu$ m,针孔直径 $W=25\mu$ m, 50 μ m。

如图2所示。透射光栅的衍射满足布拉格条件:

$$d\sin\theta = m\lambda_{\rm o} \tag{1}$$

在理论上,当 m=1时, 摄谱范围为 $0 < \lambda \leq d_{\circ}$ 实际上,对具体光谱仪说来,最大波长 λ_{max} 要同时受到接收元件的线度和灵敏度的限制;迄今为止。我们尚未观察到 100 Å 以上的 谱线,只观察到 $\lambda=56$ Å 谱线的 4 级谱。摄谱下限 λ_{min} 则受到光栅的光谱分辨率 [见下面 (2)式] 和光栅条纹物质及其厚度的影响;后者是因为波长足够短时,光栅条纹变得完全透明 而丧失色散能力。我们曾测得的最短波长为 Al-L(8 Å)。

收稿日期: 1988年9月3日; 收到修改稿日期: 1988年11月7日

谱仪的光谱分辨率主要受到光源线度的影响,根据图2的几何光学考虑,可得:

 $\Delta \lambda_{s} = (d/mL)S(\lambda)_{o}$ (2) $S(\lambda)$ 为光源尺度;通常情况下, $S(\lambda) \sim 100 \, \mu m$, $L \sim$ **10** cm, 当 m=1 时, $\Delta \lambda_s \leq 10$ Å。在这样的分辨率下, 实际诊断中只能得到包含了众多谱线的谱带,而不能 看到分立的谱线。

针孔透射光栅的另一重要特性是具有垂直于光谱 色散方向上的空间分辨能力,即图 2 中的 4S:

$$\Delta S \leqslant W \, \frac{L+D}{D}_{\circ} \tag{3}$$

configuration of a transmission grating with a pinhole

级,一般为几十埃。在色散方向上,空间信息与光谱信息重叠,造成(2)式中受光源线度影响 的光谱分辨能力 Δλ.。

另外,针孔透射光栅还有大接受角,大活性范围¹¹,易于调试等优点。

S()) S(A) (2.m) y(λ,m) S grating film source

Fig. 2 Diffraction diagram of a PTG. Its spectral and spatial resolutions are shown here

由于金的折射率对短波长射线很敏感^[19,13], 使光栅效率随波长也有敏感的波动。除了 实验上可以对其效率进行标定外, 理论上也有若干模型可用于模拟计算[14~16]。本文采用了 假设光栅条纹横截面为矩型的 Schnopper 公式^[15].

$$\frac{I^{(m)}(q)}{I_0(q)} = \left[\frac{\sin(Mm\pi)}{M\sin(m\pi)} \cdot \frac{\sin(m\pi a/d)}{m\pi}\right]^2 \left[1 - e^{-2qzk} - 2e^{-qzk}\cos(qz\delta)\right], \quad m \neq 0, \\ \frac{I^{(0)}(q)}{I_0(q)} = (a/d)^2 + (1 - a/d)^2 e^{-2qzk} + 2(a/d)(1 - a/d)e^{-qzk}\cos(qz\delta)_{\circ}$$

$$\left. \right\}$$

$$(4)$$

其中 I_0 和 $I^{(m)}$, $I^{(0)}$ 分别为入射和衍射光谱; q 为入射光波数; $n=\overline{n}+ik$, $\delta=1-\overline{n}$, n 是 金 的复折射率; M 为光栅的刻纹数(文中取为 50, 对应于 50 µm 的针孔)。

采用文献[13]中的金的光学常数,我们就在光栅的设计和使用中所关心的一些重要参 量进行了数值运算。有下述结果.

 在厚度 2 和入射光波长 λ 确定时,除零级外,各衍射级的效率随 a/d 的变 化 是 对 a/d = 0.5 呈偶对称形; 在 $0 \le a/d \le 1$ 范围内, 有与衍射级次 m 相对应的最大值个数, n+1

Fig. 3 PTG $(z=0.2 \mu m, w=50 \mu m)$ efficiencies for 1 keV ray vary versus a/d. The numbers represent the diffraction orders

图 3 画出了 z = 0.2 µm, E = 1 keV 时, 光栅的 0~4 级衍射效率随 a/d 值的变化。 a/d = 0.5 时, 全部的偶次衍射都消失了, 而 3 级 衍射又远小于1级, 这就为抑制色散中的叠级现 象提供了一种可能的途径。零级效率随 a/d 的变 化可这样认为: 当 a/d = 0 时, 光栅退化为平板, 只有部分未被完全吸收的光线形成了零级斑; 而 a/d = 1 时, 光线全部透过而形成零级斑。两种极 端情况下都没有高级衍射。图中,在 a/d = 0.4 附 近, 1 级衍射强度还超过了零级。

Fig. 4 Efficiencies of PTG $(a/d=0.4, w=50 \,\mu\text{m})$ for 1keV ray vary versus z, the thickness. The numbers represent the diffraction orders

2. 由(4)式可以看出, 在 a/d 和光能量确定时, 衍射效率随 z 的变化呈阻尼振荡形式,

Fig. 5 A PTG (z=0.2 μm, a/d=0.4, w=50 μm)
efficiencies vary versus incident ray energies. □:
Oth; ●: 1st; ○: 2end. The dashed and solid lines
show another 0.8μm thick PTG's zeroth and first order efficiencies versus incident ray energies.

且全部的高级衍射都与零级反相,使得 高级衍射效率超过零级成为可能。在图 4中 (a/d=0.4, E=1 keV)衍射效率 随厚度 z 的变化就在 $z=0.2 \mu$ m 附近出 现了一级效率高于零级的现象。

3. 图 5 是一厚度 z=0.2 μm, a/d =0.4 的光栅 0~2 级衍射效率对入射 光能量的响应曲线。同样,高级衍射与 零级是反相的,并在1keV和0.8 keV 两个波长范围出现了一级衍射强于零级 的现象。图中所示的一级衍射,已高于 10%,在所有的 X 光色散元件中,是最 高的。图中还分别用实线和虚线画出了 另一光栅(a/d=0.4, z=0.8 μm)的0 级和1级效率随入射光能量的变化。可 见 2 较小时,效率曲线起伏大,而 2 较大时,曲线相应平滑一些。

图 3~5 中所示的一级衍射效率高于0级衍射效率的现象,在国外和我们自己的实验 中,都出现过。

4. 刻纹数 M 的增加使衍射效率降低。

四、实验决定 a/d 和 z

由于光栅衍射效率严重依赖于 a/d 和 z,则了解光栅的特性,关键在于确定 a/d、z 的准确值。

由公式(4)可以得到如下的相对比值;

$$\frac{I^{(m)}(q)}{I^{(l)}(q)} = (m/l)^{2} \left[\frac{\sin(l\pi a/d)}{\sin(m\pi a/d)} \right]^{2}, \quad m, \ l \neq 0,$$

$$\frac{I^{(l)}(q)}{I^{(0)}(q)} = \left[\frac{\sin(a/d)}{\pi} \right]^{2}$$

$$(5)$$

$$* \frac{1 - c}{(a/d)^2 + (1 - a/d)^2 e^{-2qzk} + 2(a/d)(1 - a/d)e^{-qzk}\cos(qz\delta)} \circ$$
(5')

这样,在绝对效率 I⁽ⁱ⁾/I₀ 和 I^(m)/I₀ 无法测量时,只要测得 I⁽ⁱ⁾/I^(m) 的比值,就可以由(5)式, 解出 *a*/*d*;而同样测得 I⁽¹⁾/I⁽⁰⁾,用求得的 *a*/*d*,就可用(5')式解出 *z*。这样做的条件是,入射光有较好的单色性。

为此,我们利用了在胶片前加了厚度为 0.5 μm 的铝膜滤片而得到的窄带 Cu-L 谱来进 行计算。使用的胶片为新研制成功的 RXG 软 X 射线胶片,并假设它对光强的响应有对数 和线性两种情况。

这时,在光谱图中 Cu-L(11Å)谱的一级衍射明显强于 0 级(对 50 μm 针孔光栅); 据此 可认为入射光为准单色软 X 射线。表 1 是实验数据和计算结果。

Table 1 Experimental data and calulated structure parameters of the $\phi 50 \mu$ m pinhole transmission grating

film respone	I ⁽¹⁾ /I ⁽⁰⁾	$I^{(2)}/I^{(1)}$	I ⁽³⁾ /I ⁽²⁾	$I^{(4)}/I^{(3)}$	a/d	$z(\mu m)$
logarithmic	1.937	0.051	0.445	0.842	0.406	0.,207
linear	1.440	0,128	0.475	0.853	0.407	0.193

由于铝滤膜对高于和低于 11 Å 的谱线的吸收是不完全的,该结果只具有参考价值。对 光栅性质的透彻了解,有待于对光栅衍射效率的绝对标定。

五、有关实验及初步结果

实验是在上海光机所六路钕玻璃激光装置上进行的。激光波长1.06 μm,能量1~20J, 脉宽 200~400 ps;激光束经聚焦后焦斑直径~100 μm;靶为镀在 SiO₂ 上的铝、铜、金等薄 膜平面靶。图6是 50 μm 针孔光栅的典型光谱和各谱带的横向(空间)扫描曲线。实验的初步物理结果如下:

大致相同的激光能量下,轻元素软 X 射线集中在低 n 谱带; 而重元素向高 n 谱带移动,且发射明显强于轻元素,说明重元素将激光能量转换为软 X 射线的发射的效率更高。

2. 从空间扫描来看, 短波长谱带发射范围与激光光斑尺度相当, 而长波长谱带范围要 大一些。

3. 软 X 射线发射随激光能量增强而增强,且短波长谱带的增强比长波长谱带的变化 要明显;说明激光能量的增强,主要提高了电子温度。

图 6 的光谱基本覆盖了主要的软 X 射线波段,并有足够的强度;空间扫描则可以提供 第 2 点给出的信息。这些都证明了该谱仪的实用价值。

六、结 论

我们分析了针孔透射光栅的性质,计算了其衍射效率。从计算和有关实验来看,针孔透射光栅谱仪实用价值很高,必将在与软 X 射线光谱有关的领域内的实验研究中发挥重要作用。

多考文献

- [1] J. H. Dijkstra, L. J. Lantwaard; Opt. Commun., 1975, 15, No. 2 (Oct), 300.
- [2] H. Brauninger et al.; Appl. Opt., 1979, 18, No. 20 (Oct), 3502.
- [3] E. T. Arakawa, P. J. Caldwell; Nucl. Instum. &. Meth., 1980, 172, No. 1-2 (May), 293.
- [4] A. M. Hawryluk et al.; J. Vac. Sci. Tech., 1981, 19, No. 4 (Nov/Dec), 897.
- [5] R. M. Bionta; Appl. Phys. Lett., 1987, 51, No. 10 (Sep), 725.
- [6] K. Eidmann et al.; Laser &. Part. Beams, 1986, 4, Pt. 3-4 (Aug-Nov), 521.
- [7] T. Mochizuki et al.; Phys. Rev. A, 1986, 33, No. 1 (Jan), 525.
- [8] G. D. Tsakiris et al.; Europhys. Lett., 1986, 2, No. 3 (Aug), 213.
- [9] N. M. Ceglio et al.; Appl. Opt., 1983, 22, No. 2 (Jan), 318.
- [10] D. L. Matthews et al.; Phys. Rev. Lett., 1985, 54, No. 2 (Jan), 110.
- [11] N. M. Ceglio et al.; SPIE., 1986, 688, 26.
- [12] H. J. Hagemann.; J. Opt. Soc. Am., 1975, 65, No. 6 (Jun), 742.
- [13] R. Tatahyn, I. Lindu; «Low Energy X-ray Diagnostics», (Ameracan Institue of Physics, New York, 1981), 323.
- [14] N. M. Ceglio et al.; Appl. Opt., 1982, 21, No. 21 (Nov), 3953.
- [15] H. W. Schnooper et al.; Appl. Opt., 1977, 16, No. 4 (Apr), 1038.
- [16] H. Brauninger et al.; Appl. Opt., 1979, 16, No. 3 (Feb), 368.

Theoretical simulations of diffraction efficiencies of a pinhole transmission grating spectrometer

LI YAOLIN, BAI WENAN, CHEN SHISHENG AND XU ZHIZAN (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 3 September 1988; revised 7 November 1988)

Abstract

Properties of our newly developed pinhole transmission grating spectrometer are discussed. Simulatins and some detailed analysis of diffraction efficiencies of the grating have been carried out. Data of a corresponding experiment have been used to calculate some important structrue parameters of the trasmission grating.

Key words: X-ray laser; laser plasma; soft X-ray spectroscopy.